
NASA Technical Memorandum 4442

Variational Trajectory
Optimization Tool Set

Technical Description and User’s Manual

Robert R. Bless, Eric M. Queen,
Michael D. Cavanaugh, Todd A. Wetzel
and Daniel D. Moerder

JULY 1993

NASA Technical Memorandum 4442

Variational Trajectory
Optimization Tool Set

Technical Description and User’s Manual

Robert R. Bless
Lockheed Engineering & Sciences Company
Hampton, Virginia

Eric M. Queen
Langley Research Center
Hampton, Virginia

Michael D. Cavanaugh
George Washington University
Hampton, Virginia

Todd A. Wetzel
Iowa State University
Ames, Iowa

Daniel D. Moerder
Langley Research Center
Hampton, Virginia

The use of trademarks or names of manufacturers in this

report is for accurate reporting and does not constitute an

o�cial endorsement, either expressed or implied, of such

products or manufacturers by the National Aeronautics and

Space Administration.

Contents

List of Figures . i v

Abstract . 1

Introduction . 1

Background . 1

What Is the VTOTS? . 2

VTOTS Software . 3

Capabilities . 3

Purpose and Overview of Report . 4

Symbols . 4

Technical Description of Methods . 5

Generalized Optimal Control Problem . 5

Finite-Element Method . 8

Shooting Method . 9

Concluding Remarks . 11

Appendix A|User's Manual . 12

Using MACSYMA for Problem Setup . 12

The setup �le . 12

Variable names to avoid . 13

Example setup �le (problem.mac) 13

Creating the MATLAB plant module (plant.mex4) 14

Time Scaling . 15

The File Vtotsinfo.m . 1 7

Variables common to the �nite-element and shooting algorithms 17

Finite-element variables . 17

Shooting variables . 19

Overview of Problem Setup . 2 0

Solution Method Options . 20

Output . 20

Program Diagnostics . 22

Helpful Hints . 23

Detailed Example . 24

Appendix B|Additional Example Files . 34

The Unconstrained Double Integrator . 34

State-Constrained Double Integrator . 35

Control-Constrained Problem . 42

A Two-Stage-Rocket Problem . 43

Appendix C|Programmer File Reference List 51

VTOTS Driver Subroutines . 51

Finite-Element Method . 51

Shooting Method . 52

References . 53

iii

List of Figures

1. Discretized time line . 8

A1. Commands for creating plant.mex4 1 6

A2. Flowchart of problem setup . 21

A3. State histories . 3 0

A4. Costate histories . 31

A5. Control history . 31

A6. Hamiltonian history (integral cost plus adjoined dynamics), measure of
global convergence of algorithm . 32

A7. Eigenvalues of the second partial of Hamiltonian with respect to control ;
second-order su�cient condition . 33

B1. Unconstrained, double-integrator state histories 36

B2. Unconstrained, double-integrator costate histories 36

B3. Unconstrained, double-integrator control history 37

B4. Unconstrained, double-integrator Hamiltonian 37

B5. Unconstrained, double-integrator eigenvalues of Huu 38

B6. Constrained, double-integrator state histories 40

B7. Constrained, double-integrator costate histories 40

B8. Constrained, double-integrator control history 41

B9. Constrained, double-integrator Hamiltonian 41

B10. Constrained, double-integrator eigenvalues of Huu 42

B11. Control-constrained problem state histories 44

B12. Control-constrained problem costate histories 45

B13. Control-constrained problem control history 45

B14. State histories for two-stage-rocket problem 49

B15. Costate histories for two-stage-rocket problem 50

B16. Control history for two-stage-rocket problem 50

iv

Abstract

This report briey describes the algorithms that comprise the
Variational Trajectory Optimization Tool Set (VTOTS) package.
The VTOTS is a software package for solving nonlinear constrained
optimal control problems from a wide range of engineering and sci-
enti�c disciplines. The VTOTS package was speci�cally designed to
minimize the amount of user programming; in fact, for problems that
may be expressed in terms of analytical functions, the user needs only
to de�ne the problem in terms of symbolic variables. This version
of the VTOTS does not support tabular data; thus, problems must
be expressed in terms of analytical functions. The VTOTS package
consists of two methods for solving nonlinear optimal control prob-
lems: a time-domain, �nite-element algorithm and a multiple shoot-
ing algorithm. These two algorithms, under the VTOTS package,
may be run independently or jointly. The �nite-element algorithm
generates approximate solutions, whereas the shooting algorithm pro-
vides a more accurate solution to the optimization problem. A user's
manual, some examples with results, and a brief description of the
individual subroutines are included in this report.

Introduction

Background

The optimal control problem featured in this report is described as follows. Consider a
dynamical system de�ned by a �nite-dimensional set of ordinary di�erential equations, and
assume a �nite-dimensional vector of time-varying control variables. The optimization problem
is to choose the control variables to satisfy the given boundary conditions while a given
performance index (or cost functional) is minimized (or maximized). Methods available for
the numerical solution of optimal control problems generally fall into two distinct categories:
direct and indirect. Direct methods, which involve parameter optimization, directly minimize
the performance index by varying the values of the parameters. Indirect methods, on the other
hand, minimize the performance index indirectly by satisfying �rst-order necessary conditions
for optimality that are established from the calculus of variations.

The direct approach to the solution of optimal control problems requires parameterization of
the control and state time histories and results in a nonlinear programming problem to solve.
The choice of parameterization schemes is not unique, and success of the direct methods has
been achieved with Hermite polynomials (ref. 1), Chebyshev polynomials (refs. 2 and 3), single-
term Walsh series (ref. 4), and splines (ref. 5). After the parameterization scheme is chosen, a
parameter-optimization algorithm is used to determine the free parameters. These algorithms
are in common use today and include variable metric techniques or quasi-Newton methods
(ref. 6) and variations on gradient methods. Gradient methods (refs. 7 and 8) were developed to
surmount the \initial guess" di�culty associated with other methods, such as Newton algorithms.
The gradient methods are characterized by iterative algorithms for improving estimates of the
state and control time histories. First-order gradient methods rapidly improve the state and
control histories during early iterations when su�ciently far from the optimal solution; however,
these methods exhibit only linear convergence close to the solution. Second-order gradient
methods provide quadratic convergence but are more sensitive to initial guesses. Conjugate
gradient methods exploit the approximately quadratic variation of the objective function near

the solution to accelerate convergence. Reference 9 contains a thorough description of the
gradient method and other algorithmic methods in optimal control.

Because the direct method is presented as a nonlinear programming problem, the solution
is much more di�cult to obtain, especially from a software standpoint. Conversely, when the
indirect method satis�es the �rst-order necessary conditions, the problem is converted into a
system of equations that form a multipoint boundary-value problem (MPBVP), which can be
solved with simpler root-�nding techniques.

Analytical solutions to a MPBVP are generally unobtainable except for the simplest problems;
hence, numerical methods are usually employed. The two main methods for solving a nonlinear
MPBVP are shooting and quasi-linearization methods. Shooting methods (refs. 10 through 12)
are frequently used and can be described as follows. The di�erential equations and the known
initial conditions are satis�ed at each stage of the process, but the �nal conditions are not
satis�ed. A nominal solution is generated by guessing the missing initial conditions and
integrating the di�erential equations forward to reduce the error in the �nal conditions at each
iteration. Quasi-linearization methods (refs. 7 and 13) are used to choose nominal functions for
the states and costates that satisfy as many of the boundary conditions as possible. The control is
then found by using the optimality conditions. The system and costate equations are linearized
about the nominal values, and a succession of nonhomogeneous, linear, two-point boundary-
value problems are solved to modify the solution until the desired accuracy is obtained. Other
indirect methods include the method of adjoints (ref. 14) and �nite-element methods (ref. 15).
The system of equations in these methods is typically solved by Newton-Raphson (ref. 16) or
continuation algorithms (ref. 17).

A few of the commercially available programs for solving optimal control problems are
mentioned below. The �rst two programs solve general MPBVP's, whereas the last two are
particularly designed to optimize ight-vehicle trajectories.

The Chebyshev Trajectory Optimization Program (CTOP) is useful in several practical
applications (ref. 2). This program solves problems directly and parameterizes the functions
using Chebyshev polynomials. Penalty functions enforce the equations of motion and path
constraints. The Nonlinear Programming for Direct Optimization of Trajectories (NPDOT)
package uses piecewise polynomials and collocation to satisfy the di�erential equations. Results
presented in reference 1 show that the NPDOT runs more quickly than the CTOP does. Both
programs are generic optimization programs that are not limited to aerospace problems.

The Program to Optimize Simulated Trajectories (POST) targets and optimizes point-mass
trajectories for a powered or unpowered vehicle that operates near a rotating oblate planet
(ref. 18). The POST allows the solution of a wide range of ight problems that include
aircraft performance, orbital maneuvers, and injection into orbit. The user can select the
optimization variable, the dependent variables, and the independent variables from a list of more
than 400 program variables. The POST also operates on several computer systems. Another
useful program is Optimal Trajectories by Implicit Simulation (OTIS). The OTIS is a three-
degree-of-freedom (point-mass) optimization program that includes a six-degree-of-freedom and
multiple-vehicle simulation (ref. 1). The user can simulate aircraft, missiles, reentry vehicles,
and hypervelocity vehicles. The methods used were chosen to improve speed, convergence, and
applicability of the OTIS over existing performance programs. Both the POST and the OTIS
are reliable and accurate programs, but they speci�cally target aerospace applications.

What Is the VTOTS?

The VTOTS package is a set of optimal control algorithms, each based on a common, problem-
speci�c, user setup and interface. The two methods for solving optimal control problems are a

2

�nite-element and a shooting method. Each method uses a symbolic mathematics package to

organize the system equations and to calculate system Jacobians. The VTOTS package also

uses the �nite-element algorithm to obtain initial estimates for the more accurate shooting code.

Combining the �nite-element results with a shooting initial condition provides a fast solution

technique for nonlinear optimal control problems.

The VTOTS package was designed to minimize the user programming needed to solve optimal

control problems and still provide a quick, accurate solution procedure. Three software packages

that are used by the VTOTS are described in the next section.

VTOTS Software

The VTOTS optimal control algorithms use three computer languages:

1. MACSYMA MACSYMA is a symbolic mathematics package that computes analyt-

ical derivatives of mathematical expressions. A VTOTS preprocessor

was written in MACSYMA, a language developed by Symbolics, Inc., to

organize and calculate expressions needed by the VTOTS algorithms.

The preprocessor then translates these mathematical expressions into

FORTRAN.

2. FORTRAN The result of the VTOTS preprocessor is a series of FORTRAN sub-

routines that are written to disk. Each subroutine is generated by the

MACSYMA algorithm.

3. MATLAB MATLAB is a computer language that specializes in matrix manipu-

lation and vector analysis. The VTOTS program and associated algo-

rithms are written in MATLAB, a language developed by Mathworks,

Inc. The FORTRAN subroutines supplied by MACSYMA are compiled

into a single, problem-speci�c module using a MATLAB compiler. The

plant module is then accessed by MATLAB function �les.

Capabilities

The VTOTS package provides solutions to a variety of optimal control problems with both

the �nite-element and shooting algorithms. Both algorithms can solve nonlinear optimal control

problems with multiple-state or state-rate discontinuities. Also, the boundary conditions can

be any nonlinear function of the states. The �nite-element algorithm, but not the shooting

algorithm, solves problems with control and/or state constraints. The number of control

constraints is arbitrary; however, it is assumed that the same number of constraints acts

over the entire trajectory, and only one state constraint is active at a time. Furthermore,

for problems with state constraints, the control is assumed to be continuous across junction

points of constrained and unconstrained arcs. Assuming continuity of the control is tantamount

to saying that the Hamiltonian of the problem is regular; that is, a unique optimal control exists

for a given state and costate time history. The user should be aware of these assumptions and

carefully study solutions obtained from the VTOTS package, especially for constrained problems.

In general, the user should be aware that with the �nite-element algorithm, or any discretization

algorithm, the output is only a candidate solution to an extremal.

For problems with control constraints, the user is not required to specify the switching

structure of the constraint; in other words, the user does not need to know or specify in the

problem setup when the constraints will be active or inactive. However, for problems with state

constraints, the user must know the order in which the constrained and unconstrained arcs occur.

Further, if the program has active control and state constraints, a switching structure must be

3

speci�ed only for the state constraints. Details and examples of handling constrained optimal

control problems are presented in subsequent sections.

Finally, neither the �nite-element algorithm nor the shooting algorithm handles optimal

control problems with singular arcs.

Purpose and Overview of Report

This report describes the �nite-element and shooting algorithms and explains how to solve

optimal control problems with the VTOTS. The section \Technical Description of Methods"

de�nes an optimal control problem and provides a technical description of the �nite-element

and shooting algorithms. A brief discussion of each algorithm and the VTOTS package is then

presented. \Concluding Remarks" summarizes the unique features of the VTOTS. Appendix A

is a user's manual for solving optimal control problems with the VTOTS and includes an example

and some helpful hints. Appendix B contains several additional example �les and output for

problems that are solvable with the VTOTS. Finally, appendix C briey describes the VTOTS

MATLAB �les.

Symbols

F vector of right sides for state and costate equations

f right side of di�erential equations

g state and control constraints

H Hamiltonian

J scalar performance index

J1 scalar augmented-performance index

k slack variable

L integral portion of performance index

M number of elements

m number of controls

N number of phases

n number of states

q order of state inequality constraint

S state inequality constraints

tf �nal time

ti time at ith event

u control vector

V vector containing states and costates

x state vector

x̂ state vector at event points

�x state vector at midpoints

_x state time derivative vector

4

�x state variation

�� costate variation

� multiplier vector

�; � time scales

� costate vector

� multiplier vector

� vector of Lagrange multipliers

� discrete portion of augmented performance index

� discrete portion of performance index

 vector of boundary condition expressions

Abbreviations:

CTOP Chebyshev Trajectory Optimization Program

I identity matrix

MPBVP multipoint boundary-value problem

NPDOT Nonlinear Programming for Direct Optimization of Trajectories

OTIS Optimal Trajectories by Implicit Simulation

POST Program to Optimize Simulated Trajectories

VTOTS Variational Trajectory Optimization Tool Set

Technical Description of Methods

In this section, a nonlinear constrained optimal control problem is de�ned. Then, a brief
description of a �nite-element method and a shooting method is presented to solve the optimal
control problem. Further details of these methods are given in the cited references.

Generalized Optimal Control Problem

An optimal control problem is de�ned below. First, the notation is de�ned and the �rst-order
necessary conditions for unconstrained problems are derived. Then, the inclusion of constraints
on the system is considered, and the additional conditions for optimality are de�ned.

Consider a system that is de�ned from initial time t0 to �nal time tf by a set of n states x and
a set of m controls u. The states of the system are governed by a set of �rst-order di �erential
equations referred to as state equations. During the interval t0 to tf , discontinuities in the states
as well as in the state equations may occur at interior points (i.e., times between t0 and tf).
These interior, initial, and �nal points are referred to as events, and the intervals between events
are referred to as phases. The time of event i is denoted as ti, and the states and controls in
phase i are denoted as x(i) and u(i).

The optimal control problem of interest in this report is to choose a control history that
minimizes a performance index J and satis�es the state equations _x(i) = f (i)[x(i);u(i)] and
boundary conditions. Elements of a performance index may be denoted with an integrand
L(i)[x(i);u(i)], which is continuous and di�erentiable within each phase, and a discrete function

5

� of the states and/or times at any of the events. A general class of such problems with N

phases involves choosing u(t) to minimize

J = �

h
x
(1)

(t1) ;x
(1)

(t2) ;x
(2)

(t2) ;x
(2)

(t3) ; : : : ;x
(N)

(tN+1) ; t1; t2; : : : ; tN+1

i
+

NX
i=1

Z
ti+1

ti

L(i)
h
x
(i);u(i)

i
dt (1)

subject to the state equation constraints

_x(i) = f
(i)
h
x
(i);u(i)

i
(ti < t < ti+1; i = 1;2; : : : ; N) (2)

with boundary conditions speci�ed as

h
x
(1) (t1) ;x

(1) (t2) ;x
(2) (t2) ;x

(2) (t3) ; : : : ;x
(N) (tN+1) ; t1; t2; : : : ; tN+1

i
= 0 (3)

With the introduction of Lagrange multiplier functions �(t), referred to as costates, and

discrete Lagrange multipliers �, an augmented performance index J1 may be de�ned as

J1 = �+ �T +

NX
i=1

Z ti+1

ti

L(i) + �(i)
T
h
f
(i)
� _x(i)

i
dt (4)

For convenience, � and H are de�ned as

� � �+ �T (5)

and

H(i)
� L(i) + �(i)

T

f
(i) (i = 1; 2; : : :; N) (6)

The �rst-order necessary conditions for optimality are derived by requiring J1 to be stationary.

The conditions are (ref. 7)

_x(i) = f
(i)
h
x
(i);u(i)

i
(7)

_�(i)
T

= �
@H(i)

@x(i)
= �H

(i)
x

(8)

@H(i)

@u(i)
= H

(i)
u = 0 (9)

where each equation holds for ti < t < ti+1 and i = 1; 2; : : :; N . The boundary conditions are

 = 0 (10)

�(i�1)
T

(ti) =
@�

@x(i�1) (ti)
(i = 2; 3; : : :; N + 1) (11)

�(i)
T

(ti) = �
@�

@x(i) (ti)
(i = 1; 2; : : : ; N) (12)

and the transversality conditions are

@�

@t1
�H(1) (t1) = 0 (13)

6

@�

@ti
+H(i�1) (ti)�H(i) (ti) = 0 (i = 2;3; : : : ;N) (14)

@�

@tN+1
+H(N) (tN+1) = 0 (15)

The optimal control problem de�ned above is a nonlinear MPBVP. The solution to the
MPBVP yields a stationary point of J1, or a candidate optimal solution.

The problem can now be extended to include control and state inequality constraints on the
system. Control constraints (see a standard optimal control text, such as ref. 7, for details) are
de�ned as a function of the states and the control (where the control appears explicitly, but the
states may not) of the form

g (x;u) � 0 (16)

To solve this problem, the constraint g is adjoined to the cost function with a Lagrange multiplier
function �(t). This augmentation is equivalent to rede�ning the Hamiltonian of the system H

as

H = L+ �T f + �Tg (17)

The necessary conditions in equations (7) through (15) remain unchanged when the new
de�nition of H is used. However, the multiplier � requires additional necessary conditions.
For a minimizing problem, the conditions are as follows: a multiplier of zero when the constraint
is not active (g < 0) and a nonnegative multiplier when the constraint is active (g = 0).

Consider problems with state inequality constraints of the form S(x) � 0. One of several
methods available to solve problems with state constraints is to take total time derivatives
of the constraint until the control appears explicitly; this method requires substitution of the
di�erential equations for the state rates. If q time derivatives are required for the control to
appear explicitly, then the constraint is referred to as a qth -order state inequality constraint.
Now the qth time derivative of the constraint plays the same role as the control constraint g(x; u)
above. After a Lagrange multiplier function �(t) is introduced, the Hamiltonian is

H = L+ �T f + �T
dqS

dtq
(18)

where the following statements apply:

1. The multiplier � = 0 when the constraint is not violated (S < 0).

2. The value dqS=dtq = 0 when the constraint is active (S = 0).

3. The multiplier � � 0 when the constraint is active if minimizing cost.

In addition to taking time derivatives of the constraint, tangency conditions must be met
at the point of entry onto a constrained arc. These conditions are that S and the �rst (q � 1)
time derivatives of S are zero at the beginning of a constrained arc. Also, the states must be
continuous at the beginning and end of each arc. These boundary conditions are placed in ;
because of these conditions, the user must de�ne the switching structure of the constrained
arc. Thus, the user must decide when the trajectory enters and leaves the constraint boundary,
because each independent arc of the trajectory is a new phase with corresponding boundary
conditions.

Without loss of generality, all constrained problems can be set up as minimizing problems with

the constraints de�ned as less than or equal to zero. The VTOTS also requires this constraint

format.

7

Finite-Element Method

The �nite-element method converts the continuous-time necessary conditions into nonlinear
algebraic equations. The process for generating the algebraic equations is outlined below. Full
details of the method are described in reference 15.

For simplicity, the �nite-element method is outlined for a one-phase problem, that is, one with
no internal events. To begin the derivation of the �nite-element equations, the �rst variation
of an augmented performance index is taken; the resulting expression is integrated by parts so
that no time derivatives of the states x or costates � appear. Instead, one time derivative of the
variational states �x and variational costates �� appears. This appearance identi�es the simple
choice of approximating functions. Next, shape functions, or approximating functions, for the
states, costates, and controls are chosen. With the expression that is developed for the �rst
variation, the simplest possible shape functions are chosen for the states, costates, and controls,
namely, piecewise-constant functions.

To begin the discretization scheme associated with this �nite-element method, a time line
is broken into a series of equal segments, known as elements. The length of each element is
�t = (t1 � t0)=M , where M is the number of elements. The endpoints of each element are
referred to as nodes. We will denote the values of the states, costates, and controls at the
element midpoints as barred symbols. Similarly, values at the nodes will be symbols with carets.
Figure 1 is an example of a time line that is broken into �ve elements; only the state variables
are labeled. Nodal values at the beginning and end of a phase and at all midpoint values are
treated as unknowns for the states, costates, and controls. The remaining unknowns are the
discrete multipliers � and the event times ti. (See appendix A.)

ˆ

t0

–x1
–x2

–x3
–x4

–x5

x2
ˆ

t1

x1

Figure 1. Discretized time line.

The state di�erential equations that are discretized become

_x = f(x;u)) 0 =

8><
>:

�x̂1 + �x1 �
�t
2
�f1

��xi �
�t

2
�fi + �xi+1 �

�t

2
�fi+1 (i = 1;2; : : : ;M � 1)

��xM �
�t

2
�fM + x̂2

where �fi denotes the value of f at midpoint i. The costate di�erential equations become

_� = �
@H(x;�;u;�;�)

@x
) 0 =

8>><
>>:

�̂1 � ��1 �
�t

2
Hx1

��i �
�t

2 Hxi
� ��i+1 �

�t

2 Hxi+1
(i = 1; 2; : : :;M � 1)

��M �
�t

2
�M � �̂2

where �Hi denotes the value of H at midpoint i. The algebraic optimality condition becomes

Hu(x;�;u;�; �) = 0) Hu(�xi; ��i; �ui; ��; ��) = 0 (i = 1; 2; : : :;M)

The remaining equations involve the state and costate boundary conditions and the transver-
sality conditions. The same number of equations as unknowns appears in this formulation.

8

Additional algebraic conditions are associated with control constraints. The �nite-element
algorithm handles the control inequality constraints g(x;u) � 0 by introducing a positive

function k2, such that g + k2 = 0. The function k is referred to as a slack variable and

becomes an unknown. Note that when on the constraint, g = 0; therefore, k = 0. Additional

unknowns associated with state constraints are listed in appendix A.

A �nite-element method yields an approximate solution to the optimal control problem. From

numerical experience, the accuracy of the solution, or closeness to the exact answer, increases

quadratically with the number of elements (ref. 15); however, for a numerically accurate answer,

a shooting method is available.

Shooting Method

The VTOTS includes a shooting algorithm for solving the necessary conditions in equa-

tions (7) through (15). The solution technique converts the MPBVP for the Hamiltonian system

(eq. (6)), subject to equation (7) and boundary conditions (eqs. (10) through (12)), into an alge-

braic root-�nding problem in the values taken on by x, �, and t at the initial and terminal points

of the trajectory and at internal events. The procedure is accomplished by expressing terminal

values of x and � (their values at the end of phases) as functions of initial values (their values at

the beginning of phases). This conversion is achieved by integrating the solution of the ordinary

di�erential equations (eqs. (7) and (8)) from the initial values to the terminal conditions.

For simplicity, consider the case with no internal events, so that the boundary conditions of

the problem are

�
x0;xf

�
= 0 (19)

�T
0
+

@�

@x0
+ �T

@

@x0
= 0 (20)

�Tf �
@�

@xf
� �T

@

@xf
= 0 (21)

where
x0 � x (0) ;�0 � � (0)

xf � x
�
tf
�
;�f � �

�
tf
�

The variables xf and �f are evaluated as

xf = x0 + �2
Z

1

0

f(x; û) d�
�
�2 = tf

�
(22)

�f = �0 � �2
Z

1

0

@H

@x
(x;�; û) d�

�
�2 = tf

�
(23)

where H is the Hamiltonian that is de�ned in equation (6) and is evaluated along x(t), �(t),

and û(t), and û is a root of
@H

@u
(x;�; û) = 0 (24)

which is obtained by numerical solution of Hu = 0 in terms of x and � at each instant. The

result is that û appears as û(x;�) in the calculations. The partial derivatives û x and û� are

ûx = �H�1uu (Hux) (25)

9

û� = �H�1uu (Hu�) (26)

where Huu is assumed to have full rank.

The variable � in equations (22) and (23) is a parameter that scales the dummy independent
variable �,

t = �2� (0 � � � 1) (27)

In the implementation of the VTOTS shooting algorithm, � is appended to x as an additional
state variable with

_� = 0 (28)

and is solved with boundary conditions appropriate to the free- or �xed-time problem. The
costate �� that corresponds to � is appended to � and is evaluated at t = tf with the appropriate
modi�cation of equation (23).

The x, � , �, and �� variables and their propagation expressions (eqs. (22), (23), and (28))
are concatenated to form the system

Vf = V0 + �2
Z

1

0

F(V) d� (29)

V
T =

h
x
T ; �;�T ;��

i

F
T =

h
f
T ; 0;�HT

x ;�2�H
i

which satis�es the equation
	
�
V0;Vf

�
= 0 (30)

where 	 is a concatenation of equations (19) through (21), reexpressed in components of V0

and Vf .

Equation (30) is solved by expressing Vf as Vf(V0) with equation (29) and employing a
Newton-Raphson iteration to obtain V0. The jth iteration is

(V0)j+1 = (V0)j �

�
d	

dV0

�
�1

j

	
h
(V0)j

i
(j = 0; 1; : : :) (31)

The value (V0)0, the initial guess for the iteration, is usually provided by boundary values from
a converged, �nite-element run. For problems addressed to date with the VTOTS, these values
have proved to be su�ciently close to the shooting solution so that no line search was necessary
in equation (31).

The Jacobian matrix d	=dV0 in equation (31) is

d	

dV0

=
@	

@V0

+
@	

@Vf

dVf

dV0

(32)

where
dVf

dV0

= I + �2
Z

1

0

dF

dV

dV

dV0

d� (33)

The use of equations (32) and (33) to obtain d	=dV0, rather than the use of direct numerical
di�erentiation with respect to V0, is motivated by concern for numerical stability in integrating

10

V(�). When the plant states x contain dissipative e�ects, some eigenvalues of the adjoint
dynamics in equation (8) will have positive real parts. Direct numerical di�erentiation of 	(V0)

would require perturbation of V0, an action that could excite modes corresponding to unstable

eigenvalues. This problem is avoided through the use of equations (32) and (33).

Although the shooting method is slower than the �nite-element method, the shooting method

solution is as numerically accurate as the integrator used to propagate the state and costate

equations.

Concluding Remarks

This report provides a technical overview and a brief description of the algorithms that

comprise a new software package for solving optimal control problems. Although many excellent

programs are available for this purpose, the Variational Trajectory Optimization Tool Set

(VTOTS) o�ers some new features.

1. The VTOTS provides two algorithms based on indirect methods; most available programs

are based on direct methods.

2. The VTOTS provides a �nite-element algorithm for approximate solutions and a shooting

algorithm for numerically accurate solutions.

3. An optimal control problem from any discipline may be solved when properly formatted;

however, this exibility requires a VTOTS user to supply application-speci�c code.

The appendixes contain a complete user's manual that includes a detailed example and helpful

hints. Additional examples, even those using very few elements in the �nite-element algorithm,

show that a good approximation to a solution is possible. This approximation may be used

to start the shooting algorithm. Finally, a brief description of the VTOTS-MATLAB �les is

included.

NASA Langley Research Center

Hampton, VA 23681-0001

April 19, 1993

11

Appendix A

User's Manual

This appendix describes how to set up, run, and solve optimal control problems with the

VTOTS. In particular, the development of three �les that are needed to run VTOTS is described.

These �les are a plant module plant.mex4, a name list �le namcom.nml, and a MATLAB �le

vtotsinfo.m.

The �rst stage in using the VTOTS system is to set up the optimal control problem in a

MACSYMA-readable form; this step is the creation of a �le that de�nes speci�c MACSYMA

variable names, equation lists, cost expressions, and lists of parameters that de�ne the problem.

The MACSYMA setup �le and commands for producing the MATLAB-FORTRAN interface

are described in the next section. The section entitled \Time Scaling" discusses how and when

to scale the independent variable of the problem. The \Vtotsinfo.m" section describes the

user-supplied MATLAB �le that is read in by the VTOTS. That section includes a discussion

of the initial guess vector that is required for the �nite-element and shooting algorithms. An

overview of the steps required to set up the VTOTS �les is provided in the \Overview of Problem

Setup" section. The solution methods available to the user are described in the section entitled

\Solution Method Options." The \Output" section describes the output that is available to the

user when a VTOTS run is successfully completed. Some program diagnostics and helpful hints

are provided. Finally, a detailed example of the use of the VTOTS to solve an optimal control

problem is presented.

Using MACSYMA for Problem Setup

The �rst step in solving an optimal control problem with the VTOTS is to set up the problem

in MACSYMA-readable form. This process separates the dynamics, boundary conditions, and

performance index of an optimal control problem and assigns these expressions to MACSYMA-

speci�c variables. A general problem statement for an optimal control problem was given

previously.

The setup �le. The following list of MACSYMA variable names must be loaded into the

MACSYMA memory stack. These variables must be loaded into the �le problem.mac. Standard

MACSYMA syntax must be followed when these expressions are set up. See the MACSYMA

Reference Manual (ref. 19) for details.

stlist list of state variable names

ctlist list of control variable names

phi scalar cost expression that is a function of states at events only

thi scalar cost expression that is a function of time at events only

ellist list of integral cost terms; corresponds to L in the performance index

delist list of di�erential equations; corresponds to f in the problem statement

psilist list of boundary conditions that are a function of states at events only;

each term in psilist will be zeroed in the solution of the problem

tsilist list of boundary conditions on time for each phase; may be empty

glist list of state and control inequality expressions

qlist list de�ning the switching structure and the qth time derivative of a state

constraint

12

namcom list of scalar FORTRAN variables for placement in the parameter name
list; useful for parameters that vary across a family of problems; for
example, an initial condition could be put in namcom and then changed
without having to rerun MACSYMA

namarray \list of lists" of variables appearing in the name list that need to be
dimensioned in FORTRAN; variables are expressed in namarray with the
correct dimension; for example, namarray: [[a,3],[b,4],[f,7]]; dimensions
a at (3), b at (4), f at (7); namarray is optional

The variables phi and psilist have a common convention for de�ning event conditions. In
these variables, a state name followed by two indices is used. The �rst index denotes the phase
number, and the second denotes the initial or �nal time of the phase, 1 for initial and 2 for �nal.

The variables delist, glist, and qlist are lists of sublists. They contain one sublist for each
phase. Refer to the section entitled \Additional Example Files" for further clari�cation.

Variable names to avoid. The following variables cause errors that may not be detectable
by the MACSYMA preprocessor. In the following, # denotes a number and * denotes a wild
card.

c# MACSYMA command line variable storage

d# MACSYMA display line variable storage

e# MACSYMA internal variable sequence

emq* variable-name string reserved by VTOTS

The user must avoid the variables sin, cos, log, and exp because these strings are treated as
the corresponding function names. Also, the user must avoid using the tangent function in the
setup �le because MACSYMA does not successfully convert this function to FORTRAN. The
user is responsible for ensuring that each variable name used in the MACSYMA problem setup
does not begin with the letters i, j, k, l,m, or n because these letters are reserved for integers in
FORTRAN. Do not use thyme as a variable except in thi and tsilist. Also, any MACSYMA
keyword that is used as a variable name leads to unpredictable results. The user should always
check the MACSYMA output for error messages.

Example setup �le (problem.mac). This example will help the reader understand how
the MACSYMA setup �le is de�ned. A complete optimal control problem example is presented
in the section entitled \A Detailed Example."

Consider this linear-quadratic optimal control problem: �nd u(t) to minimize the scalar
performance index J , where

J =

Z
1

0

h
x2(t) + u2(t)

i
dt

subject to
_x(t) = x (t) + u(t)

with boundary conditions
x(0) = 0

x(1) = 1

13

The following �le (problem.mac) loads this problem into MACSYMA:

stlist: [x]; /*defines the state variable names*/

ctlist: [u]; /*defines the control variable names*/

glist: [[]]; /*no control constraints specified*/

qlist: [[]]; /*no state constraints specified*/

phi: 0; /*no discrete cost on states defined*/

thi: 0; /*no discrete cost on times defined*/

ellist: [x^2+u^2]; /*quadratic cost function*/

psilist: [/*Notice the indices for boundary conditions*/

x(1,1)-x0, /* (1,1) - 1st phase, initial time */

x(1,2)-xf /* (1,2) - 1st phase, final time */

]; /*The same index scheme is used in phi*/

tsilist: [thyme(1)-1]; /*(1) - final time of the first phase*/

delist: [[

x+u

]]; /*differential equations */

namcom: [x0,xf]; /*these variables are found in the FORTRAN namelist*/

The MACSYMA comments (delimited by /* and */) on the right do not need to appear.

Creating the MATLAB plant module (plant.mex4). In this section, a listing of �le
names and UNIX commands is given to show how to use the MACSYMA preprocessor and
how the MACSYMA-produced �les are compiled into a single problem-speci�c module. Several
versions of MACSYMA and FORTRAN are available, and these vary from one machine to
another. The existing versions of MACSYMA (version 417.100), FORTRAN (version 1.4), and
MATLAB (version 3.5i) described in this report are speci�c to Sun SPARCstation IPC and
IPX workstations.

After the problem-speci�c information has been set up in a �le such as problem.mac, the
MACSYMA preprocessor can be run. The MACSYMA preprocessor consists of the following
nine MACSYMA script �les that create FORTRAN �les:

allell.mac creates allell.f

allf.mac creates allf.f

allg.mac creates allg.f

allq.mac creates allq.f

allphi.mac creates allphi.f

allthi.mac creates allthi.f

allpsi.mac creates allpsi.f

alltsi.mac creates alltsi.f

plant.mac creates plant.f and namcom.nml

The FORTRAN �le allell.f evaluates the cost integrand L for all phases. Similarly, allf.f
evaluates the right side of the di�erential equations for all phases; allg.f and allq.f evaluate
the constraints; allphi.f and allthi.f evaluate the discrete cost terms; allpsi.f and alltsi.f

evaluate the boundary conditions; plant.f is the master routine that coordinates calls to the
other FORTRAN �les; and namcom.nml contains the variables in namcom.

14

One additional �le, plantg.f, is required to construct the plant module. This �le is supplied
and does not require changes by the user. The �le plantg.f is a gateway �le to pass information
between the FORTRAN routines and MATLAB.

The commands for running the MACSYMA preprocessor are:

batch("problem.mac");

gentranin("plant.mac",["plant.f"]);

gentranin("allf.mac",["allf.f"]);

gentranin("allell.mac",["allell.f"]);

gentranin("allphi.mac",["allphi.f"]);

gentranin("allthi.mac",["allthi.f"]);

gentranin("allg.mac",["allg.f"]);

gentranin("allq.mac",["allq.f"]);

gentranin("allpsi.mac",["allpsi.f"]);

gentranin("alltsi.mac",["alltsi.f"]);

quit();

This sequence of commands can also be placed in a �le (batch�le.mac, for example) and
batched at the system-level command prompt by typing the following batch command:

macsyma < batchfile.mac >! std.out &

where std.out will contain MACSYMA run time information and error messages. These
�les must then be compiled with the system FORTRAN compiler. On the Sun systems, the
commands are as follows:

f77 -c all*.f &

Then the plant.f and plantg.f �les must be compiled with a MATLAB compiler and linked to
the other object code with the command

fmex plant.f plantg.f all*.o

The result is the plant.mex4 �le, which can be moved to a convenient working directory and
accessed by MATLAB routines in much the same way that functions are called. Figure A1 shows
a summary of the commands for creating the plant module plant.mex4.

Any plant module that is acceptable for use with the shooting algorithm will also work for the
�nite-element algorithm; however, the converse may not be true. For example, a plant module
that includes constraints will work with the �nite-element algorithm but not with the shooting
algorithm.

Time Scaling

The �nite-element algorithm in the VTOTS does not require special scaling of the time
parameter. However, in order to run the shooting algorithm in the VTOTS, the user must scale
the time of each phase to a length of one. This procedure requires the conversion of free-time
problems to �xed-time problems.

The variable � is de�ned such that � = t=tf , where t is the independent variable and tf
is the �nal time (possibly unknown). Because t varies monotonically from 0 to tf , � varies
monotonically from 0 to 1. Also note that

dx

d�
=

dx

dt
tf

Thus, the di�erential equations for any �xed �nal-time problem can be scaled from 0 to 1 by
multiplying each equation by the desired known �nal time.

15

MACSYMA Environment
commands: batch("problem.mac");

gentranin("plant.mac",["plant.f"]);
gentranin("allf.mac",["allf.f"]);
gentranin("allell.mac",["allell.f"]);
gentranin("allphi.mac",["allphi.f"]);
gentranin("allthi.mac",["allthi.f"]);
gentranin("allg.mac",["allg.f"]);
gentranin("allq.mac",["allq.f"]);
gentranin("allpsi.mac",["allpsi.f"]);
gentranin("alltsi.mac",["alltsi.f"]);
quit();

files: plantg.f
plant.f
allf.f
allell.f
allphi.f
allthi.f
allg.f
allq.f
allpsi.f
alltsi.f

(VTOTS supplied)
(MACSYMA generated)
 "
 "
 "
 "
 "
 "
 "
 "

files: problem.mac
allell.mac
allf.mac
allg.mac
allq.mac
allphi.mac
allthi.mac
allpsi.mac
alltsi.mac
plant.mac

(USER supplied)
(VTOTS supplied)
 "
 "
 "
 "
 "
 "
 "
 "

commands: f77 -c all*.f &
fmex plant.f plantg.f all*.o

FORTRAN/MATLAB Environment

plant.mex4 (used by VTOTS for problem specific information)file:

Figure A1. Commands for creating plant.mex4.

16

This method can be used even if the �nal time is not known a priori. For a free �nal-time
problem, de�ne an extra state, for example � , to be solved by the system. The di�erential

equation for � is

_� = 0

so that � is a constant. Its value is equal to the �nal time (as yet unknown). In this case, to
prevent the time scale from becoming negative, set � = t=tf = t=�2. Now,

dx

d�
=

dx

dt
�2

Therefore, all the di�erential equations are multiplied by �2.

Similarly, the VTOTS can also solve nonautonomous problems. In this instance, the time

t becomes a state, with the additional boundary condition that this new state has an initial

condition of 0; the corresponding di�erential equation is _t = 1.

Multiphase problems can be handled by a straightforward extension of this technique.

Examples of time scaling are given in the \Additional Examples" section.

The File Vtotsinfo.m

In addition to the �les namcom.nml and plant.mex4 created in the MACSYMA environ-

ment, the user must supply a MATLAB �le called vtotsinfo.m. Because the VTOTS uses an

iterative method to solve MPBVP's, an initial guess is required. The �le vtotsinfo.m stores

this initial guess with several other optional variables.

Some variables are common to both algorithms and some are speci�c to either the �nite-

element or the shooting algorithm. All the variables are discussed below.

Variables common to the �nite-element and shooting algorithms. The following

variables may be de�ned in vtotsinfo.m; if not de�ned, they are not used:

prob name comment about the current problem; placed in single quotes

timestate integer between 1 and number of states in problem, which corresponds

to position of time state; timestate de�ned only for plotting purposes;

de�ning timestate automatically scales the x-axis of the plots to the

correct values of the independent variable

scale matrix of scaling factors n by nph, where n is the number of states plus

costates and nph is the number of phases; each row of the matrix scales

the states and costates in the corresponding phase; the i, j element of

scale multiplies the ith state in the jth phase; for a problem that has

been nondimensionalized, scale will dimensionalize the problem; as an

example, see the section entitled \A Two-Stage-Rocket Problem" in

appendix B

Finite-element variables. The following variables are de�ned by the user in vtotsinfo.m

if the �nite-element algorithm is run:

jbcv vector of number of elements in each phase; vector length is equal to

number of phases; jbcv determines the mesh density of the solution in

each phase; jbcv � 1; this variable is required

yin vector of initial estimates for all unknowns; size and order of the initial

guess are de�ned below; this variable is required

17

converge variable that de�nes the convergence criterion; default value is 1 � 10�9;
sometimes useful to raise this convergence value if the code approaches a

solution but does not reach it; raising convergence value allows the user to

look at the answer before full convergence is reached to see if the solution

is being approached or not; this variable is optional

In order to use the �nite-element method, estimates must be provided for all unknowns.

Consider a single-phase problem. A set of unknowns occurs at the midpoint of each element

(denoted by z) and also at the beginning and end of each phase ẑ. Each set of unknowns

consists of, in the following order, the states (x1; : : : ;xn), the costates (�1; : : : ;�n), the controls

(u1; : : : ;um), the multipliers for each control constraint (�1; : : : ;�np), the slack variables for

each control constraint (k1; : : : ; knp), and the multipliers for the state constraints (�1; : : : ; �nq).

There may not be any constraints; therefore, no multipliers or slack variables are required.

After these estimates have been assembled, several more estimates are added to the end. These

estimates correspond to the discrete Lagrange multipliers � that adjoin the boundary conditions

held in and to the discrete multipliers �t that adjoin the boundary conditions in tsi. Finally,

an estimate for the �nal time is made after the multiplier estimates.

For brevity, the set of unknowns for a problem with three states, two controls, one control

constraint, one state constraint, four state boundary conditions, and one time boundary

condition is

z = (x1; x2; x3; �1; �2; �3; u1; u2; �1; k1; �1)

and the format of the initial estimates for jbcv = 5 is

�
ẑ1; z1; z2; z3; z4; z5; ẑ2; �1; �2; �3; �4; �t1; t1

�

A general formula can be de�ned for the size of the initial estimate �le. Name the number of

states nx, the number of controls nu, the number of control constraints np, the number of state

constraints nq, the number of state boundary conditions (length of psi) mbc, the number of time

boundary conditions (length of tsilist) tbc, and the number of phases nph. Also, the variable

jbcv de�nes the number of elements per phase. The formula for determining the number of

initial guesses for single-phase problems is

(2nx+ nu + 2np+ nq) (jbcv + 2) +mbc+ tbc+ 1

For example, a single-phase problem with three states, two controls, one control constraint,

zero state constraints, four state boundary conditions, one time boundary condition, and �ve

elements would require an initial guess �le of length (3 + 3 + 2 + 2)(5+ 2) + 4 + 1 + 1 = 76.

For multiple-phase problems there is an obvious extension to this formula. Unknowns occur

at the midpoint of the elements in each phase and at the endpoints of each phase. Two coincident

nodes appear at the juncture of phases. Although these nodes occur at the same instant, the

values of the variables (states, costates, and controls) may be di�erent. In fact, this discontinuity

in one or more variables often requires introduction of the additional phases. The assembly of

the initial guess vector is similar to the single-phase process. Sets of unknowns for the �rst phase

are assembled as described above for the single-phase problem. Next, before the values of � are

added, sets of unknowns are added for the second and subsequent phases. At the juncture of

phases, the sets of unknowns may have identical values. When all phases have been assembled,

18

one � for each boundary condition in and tsi and estimates for the �nal times of each phase
are added to the end of the initial estimate vector. The general formula

(2nx+ nu+ 2np+ nq)

2
4
nphX

i=1

jbcv (i) + 2nph

3
5+mbc+ tbc+ nph

may be used to calculate the length of the initial estimate �le.

Shooting variables. The VTOTS provides a shooting algorithm that may be run directly or
automatically (without user interface) after a successful �nite -element run. The setup outlined
in this section describes how to run the shooting algorithm directly. (The VTOTS initializes the
shooting startup automatically when the �nite-element/shooting method is operating so that no
additional setup beyond the �nite-element initialization is required.)

As with the �nite-element method, starting estimates must be provided for all shooting
method unknowns, which are the state and costate values at the beginning of each phase and
at any user-speci�ed interior phase points (nodes). In addition, this method requires Lagrange
multipliers and a control estimate. A summary of these estimates and the variables that specify
the number and frequency of nodes is shown below and must be included in the �le vtotsinfo.m.

yin initial estimates for each phase and node; this column vector must contain the
states and costates of the �rst phase followed by the states and costates of the
�rst node, etc.; length of yin = 2nx[

P
(nnode) + nph]; this variable is required

utrial control estimate for the system at the initial time; this variable is required

nnode column vector that contains number of nodes in each phase; the �rst element in
the vector speci�es the number of nodes in the �rst phase, etc.; a 0 is needed if
the phase does not contain nodes; this variable is required

ynu column vector containing the Lagrange multipliers; length of ynu=mbc; this
variable is required

time matrix in which each column holds node times for each phase, including a 0 to
start the phase and a 1 to end it; shorter columns (fewer nodes in a particular
phase) must be padded with 0's to make the matrix square; for a single-phase
problem, the vector time must be a column vector; this variable is required

err speci�es the integrator error; default is 1 � 10�6; this variable is optional

For example, consider a two-state, two-phase problem with two nodes in the �rst phase (at
times 0.2 and 0.6) and one node in the second phase (at time 0.5). Three boundary conditions
exist.

nnode = [2 1];

time = [0 .2 .6 1; 0 .5 1 0]';

err = 1e-6;

utrial = -.5;

yin = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];

ynu = [1 2 3];

Notice that the trailing 0 in the time variable makes the matrix rectangular.

19

Overview of Problem Setup

The problem-setup procedure is illustrated in �gure A2. Three �les in this procedure are
provided by the user: problem.mac, namcom.nml, and vtotsinfo.m. The MACSYMA �le,
in this case problem.mac, can have any name; however, the other two �les must be named
namcom.nml and vtotsinfo.m. The �rst step is to process the MACSYMA �le as described
in the section entitled \Using MACSYMA for Problem Setup" to produce the �les plant.f and
namcom.nml and eight other FORTRAN �les. At this point, the name list �le namcom.nml

has a list of parameters with no values. The user must edit this �le and input the parameter
values. Next, the all*.f �les should be compiled to form object �les. The object �les, the
plant.f �le, and the plantg.f �le are combined into a �le called plant.mex4 through the use
of the MATLAB fmex utility. At this point, the command vtots in MATLAB causes VTOTS
to access the �les plant.mex4, vtotsinfo.m, and namcom.nml. The user is prompted for
several options, which are discussed in the next section.

Solution Method Options

After the plant.mex4, namcom.nml, and vtotsinfo.m �les are created, the user is ready
to start MATLAB and run the VTOTS by typing in vtots at the MATLAB prompt. A menu
appears that lists four solutionmethod options. The user can choose the �nite-element algorithm,
the shooting algorithm, or the �nite-element algorithm followed by the shooting algorithm. The
fourth option is to exit the program, a useful choice if the name list �le is not set properly or if
the initial estimate �le is not the proper length. The word READY appears next to each option if
the initial estimate is the proper size. Choosing an option without a READY results in errors.

When the option for a �nite-element algorithm is chosen, the user must decide between three
di�erent solution methods to solve the algebraic equations. The user is prompted to choose
between a continuation method, MATLAB's fsolve algorithm (ref. 20), and a Newton method.

The continuation method is a simple type of homotopy described in reference 21. This option
is the most robust of the three methods (that is, it allows for the least accurate initial estimate
and still �nds a solution), but it is also the slowest. After the continuation method is completed,
the Newton method is automatically called to obtain the solution. In certain cases, the integrator
for the continuation method is interrupted and gives an error message like

Singularity likely at t=0.456

The Newton method is called at this time and may converge on the solution; in such a case, the
message can be ignored.

The fsolve algorithm in MATLAB is a Newton method with a line-searching algorithm. The
fsolve algorithm is generally not as robust as the continuation method, but it does run faster.

The Newton method is the fastest of the three solution methods, but it requires the best
initial estimate. Generally, the Newton method should be attempted �rst. If the program does
not converge, then either improve the initial estimate or try another method.

The shooting algorithm runs only a Newton method. In general, a �nite-element solution
should be obtained before the shooting algorithm is attempted.

Output

After a successful �nite-element run is executed, the user is prompted to save a variable called
yout. This variable is the same length as the user-supplied yin and contains the converged values
of the solution vector. To save this variable, use the command

save yout.dat yout /ascii

20

MACSYMA

COMPILER

FMEX

MATLAB

USER-
SUPPLIED

VALUES

PROBLEM.MAC

NAMCOM.NML

VTOTSINFO.M

all*.f files

all*.o files

plant.f plant.mex4

namcom.nml

 VTOTS
 ALGORITHM

Figure A2. Flowchart of problem setup.

21

After completion of a �nite-element solution, the user is always prompted to run another
problem with a di�erent number of elements. The number of elements is usually increased to

obtain better accuracy, but the number of elements may be decreased. The user must input the

number of elements as a vector of a length that corresponds to the number of phases. When the

number of elements is increased (or decreased), code convergence is not guaranteed.

After completion of all �nite-element or shooting runs, the program stores a matrix of values

in yall. This matrix is used for plotting, and it can be saved in the same way as yout, except

the user is not prompted to do so. The save command may be evoked after completion of the

plotting. The matrix yall contains the following columns of data: the time, the states, the

costates, the controls, the Hamiltonian, and the eigenvalues of the second partial derivative of

the Hamiltonian with respect to the controls. Because the Hamiltonian is constant for each phase

at the exact solution, the value of the Hamiltonian should be on the order of 1� 10�5 for the

shooting code, which uses an integrator with an error tolerance of 1� 10�6. The �nite-element

algorithm is not as accurate unless the number of elements (jbcv) is large. The eigenvalues

are important because they serve as a second-order necessary condition for a minimum or

maximum. The eigenvalues should be positive everywhere for a minimization problem and

negative everywhere for a maximization problem. Although the multipliers for the constraints

are not available in yall, these values are available in the vector yout.

The plotter routine may be called directly by the user if yall is saved. To call the plotter,

enter

plotter(nx,nu,yall)

at the MATLAB prompt. Each of these arguments should be in the workspace after a successful

run by either the �nite-element or the shooting algorithm. Type help plotter for more

information.

Program Diagnostics

The following list shows some potential errors that can occur:

1. Common MACSYMA mistakes are

a. Use of an equal sign (=) instead of a colon (:).

b. Not ending a line with a semicolon (;), the result of which is usually a MACSYMA

error message stating that some variable is not an Infix operator.

c. Use of wrong number of brackets when de�ning MACSYMA variables. The variables

delist, glist, and qlist are \lists of lists" that require an extra set of brackets. Incorrect

number of brackets usually results in the message part fell off end.

d. Failure to compile, an indication of a mistake in the MACSYMA setup �le.

2. Segmentation violation during a call to plant.mex4 is caused by a mistake in the

MACSYMA setup �le.

3. No READY light by any of the solution options (except (4) Exit Program) indicates that

the initial estimate is not the correct length. Choosing the desired option should point to

the discrepancy.

4. Failure to provide values for the name list can produce strange results. (These values are

held in the �le namcom.nml.)

5. A warning that a matrix is singular or badly scaled, given during a Newton method, means

that the Jacobian matrix is singular and cannot be inverted by MATLAB. In this case,

either the initial estimate leads to a singular matrix, the problem is poorly de�ned, or the

22

problem is singular at the solution. Fixing this problem requires remodeling the problem

or changing the initial estimate �le.

6. A no converge in unod.m indicates that one of the control values during an interpolation

routine was not found. This condition is generally caused by a bad solution vector,

although convergence was obtained. Commonly, a state or control that is an angle assumes

a value in the wrong quadrant.

7. A no converge during a shooting run generally indicates that the initial estimate provided

by the user is too far from the solution.

8. A warning during compilation that a do loop is not executed in alltsi.f may be ignored.

This warning occurs whenever tsilist is empty.

Helpful Hints

In this section, helpful hints are suggested for obtaining a solution to an optimal control

problem. It is assumed that the plant.mex4 �le is bug free and the name list �le is complete.

1. A �nite-element solution is almost always easier to obtain than a shooting solution;

therefore, start with �nite elements.

2. When using �nite elements, start with a small number of elements and increase; in general,

the initial estimate does not need to be as accurate for a small number of elements as for

larger numbers of elements.

3. When increasing the number of elements, it is not necessary to increase the elements in

each phase.

4. Avoid the use of numbers in the MACSYMA setup �le. De�ne these constants as variables

in the name list.

5. Make sure that namcom.nml is �lled in properly, in double precision. A name list that

is not �lled in could lead to a singularity in the Jacobian.

6. Avoid the use of variables starting with i, j, k, l, m, or n.

7. See the example in the section entitled \State-Constrained Double Integrator" for tips on

how to get switching structure for state-constrained problems.

8. When solving a problem with control constraints, do not choose zero as an initial guess

for the multiplier and slack variable; this choice causes a singular matrix.

9. Remember that all constrained problems must be minimization problems. Any maxi-

mization problem can be transformed into a minimization problem by multiplying the

performance index by �1.

10. In general, avoid an estimate of zero for unknowns.

11. Remember to list all known continuity conditions on states for problems with multiple

phases.

12. VTOTS cannot directly handle boundary conditions that contain states and time. If this

situation occurs, introduce another state that corresponds to the time, as shown in the

section entitled \Control-Constrained Problem."

23

Detailed Example

Consider the transfer of a particle to a rectilinear path as described in section 2.4 of

reference 7. The particle has constant acceleration a. The problem is de�ned in terms of

four states

x x-coordinate

y y-coordinate

u velocity in x-direction

v velocity in y-direction

and one control

� angle-of-acceleration vector, measured positive from x-axis

The di�erential equations are given by

_x = u

_y = v

_u = a cos�

_v = a sin�

The goal is to maximize the velocity in the x-direction after 20 sec. All states are initially zero,

and the �nal velocity in the y-direction is zero. The �nal y-coordinate is 100. There is no integral

cost and no constraints are imposed.

In order to demonstrate both the �nite-element algorithm and the shooting algorithm, the

problem is scaled so that the phase has a duration of one (as required by the shooting algorithm).

The di�erential equations are multiplied by the �nal time to achieve the scaling. (See the section

entitled \Time Scaling.")

Several constants are used in this problem: the magnitude of the acceleration a, the �nal

time, and the speci�ed initial and �nal conditions on the states. These constants are assigned

values in the �le namcom.nml and can be changed between VTOTS runs without repeating

the MACSYMA process.

For this problem, the MACSYMA input �le is as follows:

/* This is the fixed-time trajectory optimization problem

Section 2.4, Bryson and Ho */

stlist:[x,y,u,v];

ctlist:[beta];

glist:[[]];

qlist:[[]];

ellist:[0];

phi:u(1,2);

thi:0;

psilist:[x(1,1)-x0,

y(1,1)-y0,

u(1,1)-u0,

v(1,1)-v0,

y(1,2)-yf,

v(1,2)-vf];

24

tsilist:[thyme(1)-1];

delist:[[tim*u,tim*v,a*tim*cos(beta),a*tim*sin(beta)]];

namcom:[x0,y0,u0,v0,yf,vf,a,tim];

The name list �le namcom.nml is

$namcom

X0 = 0.0d+00,

Y0 = 0.0d+00,

U0 = 0.0d+00,

V0 = 0.0d+00,

YF = 100.0d+00,

VF = 0.0d+00,

A = 1.12397d+00,

TIM = 20.0d+00,

$end

The name list starts with a dollar sign in the second column, and no data are entered in the

�rst column. The MACSYMA scripts produce this �le with the variable names but without the

values.

To run the problem, an initial guess must be supplied in vtotsinfo.m:

prob name='BHO-FIX - B&H Fixed time prob:';

jbcv=[5];

tab=[0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.1;

1.0 100.0 100.0 10.0 0.0 1.0 1.0 1.0 1.0 0.1];

t=[0;.1;.3;.5;.7;.9;1.0];

yin=table1(tab,t);

yin=reshape(yin',63,1);

yin=[yin;ones(7,1);1.0];

scale=[20.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0];

The �rst line of vtotsinfo.m gives a comment that is displayed when the problem is run. This

comment is an optional declaration by the user. The second line de�nes the number of elements

in the �rst �nite-element run. This variable must be de�ned if the �nite-element algorithm is

used. The user has the option of increasing or decreasing jbcv if the �rst run is successful.

The next four lines demonstrate the ability of the MATLAB table1 function to create an initial

guess from linear interpolation. The matrix tab consists of 2 rows and 10 columns. The �rst

column is an independent variable that starts at 0 and ends at 1. The next nine columns are

(in order) estimates at the states (four columns), estimates at the costates (four columns), and

estimates at the control (one column). In this example, only crude estimates for the beginning

and ending values of the variables are made, and table1 draws straight lines between them. For

example, in the third column of tab, the estimated value of the second state y is 0 at t = 0

and 100 at t = 1. The next variable is the column vector t. This variable de�nes the location

on the discretized time line where the estimates are needed. Recall that estimates are needed

at the endpoints of the phase and at the midpoints of the elements (�g. 1). Next, the initial

guess of the solution is put in a column vector with the reshape command. Finally, estimates

for the discrete multipliers and time are added. Because psilist has a length of six and tsilist

has a length of one, seven estimates of 1 for the discrete multipliers are given. Also, because

the problem has been scaled to run from 0 to 1, the estimate for the �nal time is 1. Finally,

25

the variable scale scales the output quantities. (See the section entitled \Variables Common to
the Finite-Element and Shooting Algorithms.") Because only the time line is scaled, the �rst
number is 20.0 (the actual �nal time) and the next 8 values (states and costates) are 1.0 (because
these were not scaled). Another example of the use of scale is given in the section entitled \A
Two-Stage-Rocket Problem."

Running the MACSYMA commands in �gure A1 creates the plant.mex4 �le. After the
plant �les plant.mex4, vtotsinfo.m, and namcom.nml are created, VTOTS is ready to run.

After the user enters MATLAB, typing vtots at the MATLAB prompt returns the following:

Variational Trajectory Optimization Tool SET

VTOTS - v. 2.0

PROBLEM SPECIFIC INFORMATION

BHO-FIX - B&H Fixed time prob:

Number of states nx = 4

Number of controls nu = 1

Number of control constraints np = 0

Max. No. of active state constraints .. nq = 0

Number of state b.c`s mbc = 6

Number of time b.c`s tbc = 1

Number of phases nph = 1

Number of elements in phase number 1... jbcv(1) = 5

METHOD SELECTION

(1) Finite Elements READY

(2) Shooting -----

(3) F/E - Shooting READY

(4) Exit Program READY

INPUT SELECTION>>

The comment line is displayed and is followed by a brief summary of the important parameters
for this problem. Next, a list of options appears with a READY message indicating the options
that can be selected. Because the di�erent methods require di�erent initial guess forms, not all
methods are available at once.

In this example, the most powerful option for solving unconstrained optimal control problems
is demonstrated. Starting from the initial guess de�ned in vtotsinfo.m, the �nite-element
algorithm is successfully run. Initial estimates can then be generated for the shooting algorithm
to produce an essentially exact answer to the problem. The �nite-element/shooting option is
method 3 and is selected by typing 3 <cr> at the prompt. This selection leads to the following
message:

Enter 1 to run a continuation method

Enter 2 to run fsolve

otherwise <cr> to run a Newton method

26

Hitting a carriage return at this prompt begins execution of the Newton method. A sample of
the execution follows.

the initial error is 8.14201

step size = 1

the error is 3.66657

the iteration number is 1

step size = 1

the error is 0.508319

the iteration number is 2

step size = 1

the error is 0.220737

the iteration number is 3

step size = 1

the error is 0.0100028

the iteration number is 4

step size = 1

the error is 7.62849e-06

the iteration number is 5

step size = 1

the error is 2.0227e-12

the iteration number is 6

CONVERGED

Total run time is 20.5638

Now is your chance to save yout

K>>

The given initial estimate converged with the Newton method in six iterations and required
20.5638 sec of run time. The step size listed in the left column refers to the Newton method
line search step size. If the error is not reduced with the current step size , then the step size is
reduced. The step size is continually reduced until the error improves (decreases). In this case,
all iterations improved the error. Convergence is obtained when the error is less than 1� 10�9,
unless another value is set by the user in vtotsinfo.m with the variable converge. (See the
section entitled \Finite-Element Variables.")

The output after a problem converges should be saved because many successful initial estimate
�les are generated by slight changes to output �les from similar problems. A descriptive name
is also helpful. For example,

K>> save bhofix5.dat yout /ascii /double

saves the output in the �le bho�x5.dat (named for the Bryson and Ho �xed-time problem
with jbcv = 5). The format is double-precision ascii. Usually, a good procedure is to start
with a small value for jbcv and build up until the desired resolution is reached. After saving
the output, type return <cr> at the K prompt to continue. Next, the code gives the option of
changing jbcv.

27

Change JBCV? y or n>> y

INPUT JBCV>> [10]

Enter 1 to run a continuation method

Enter 2 to run fsolve

otherwise <cr> to run a Newton method

A carriage return here restarts the program, with an initial estimate automatically generated by

linear interpolation of the preceding solution.

the initial error is 0.13357

step size = 1

the error is 0.0148538

the iteration number is 1

step size = 1

the error is 2.86589e-05

the iteration number is 2

step size = 1

the error is 2.56208e-10

the iteration number is 3

CONVERGED

Total run time is 22.0878

Now is your chance to save yout

K>>

The initial error is smaller than it was in the �rst run, and the problem converges in fewer

iterations. The run time is about the same because a larger system of equations is solved at

every iteration. After saving this new solution, the user is again prompted to change jbcv. If

the reply is n this time, then the shooting algorithm is started and the convergence is displayed

on the screen.

SHOOTING

iteration 1 abs error 2.73e-02

iteration 2 abs error 6.89e-04

iteration 3 abs error 4.18e-07

iteration 4 abs error 5.26e-13

total time: 165.74 seconds

The user is next given the option to plot any of the following: states, costates, controls,

Hamiltonian, and eigenvalues of the second partial of the Hamiltonian with respect to the

controls.

do you wish to plot the results?[y] or [n] y

do you wish to see the state histories plotted?[y] or [n] y

28

After each plot of four histories, the following message appears:

type "print <cr>" to get a hardcopy of graphs

type "return <cr>" to see rest of states

K>>

Typing print <cr> would print the graphics window of four plots to the MATLAB printer. In

this case, typing return <cr> goes to the option for displaying the costate histories because only

four states are available. Next, follow the other plot options. The plots produced by VTOTS

for this example are shown in �gures A3 through A7.

do you wish to see the costate histories plotted?[y] or [n] y

do you wish to see the control histories plotted?[y] or [n] y

do you wish to see the Hamiltonian plotted?[y] or [n] y

do you wish to see Eigenvalues of H uu plotted?[y] or [n] y

These and all remaining plots in this report reect the plots produced automatically by the

VTOTS. The states labeled x1, x2, : : :, xn in �gure A3 correspond to the states in stlist de�ned

by the user in the setup �le. The costates labeled lambda1, lambda2, : : :, lambdan in �gure A4

correspond to the costates in the same order as the states. The controls labeled u1, u2, : : :, un

in �gure A5 correspond to the controls listed in ctlist de�ned by the user in the setup �le. Also,

the second partial derivative of the Hamiltonian H with respect to u is denoted by H uu in

�gure A7. Finally, the VTOTS makes no provisions for units on the plots because the units will

change from problem to problem.

After the last plot, the VTOTS is �nished; the user is then returned to the MATLAB prompt.

Note that in �gure A3 all boundary conditions speci�ed in psilist are satis�ed. Also, the x-axis

on the graphs runs from 0 to 20 because the scale variable is used in vtotsinfo.m. Without

that variable, the x-axis would run from 0 to 1.

29

0

50

100

150

0 5 10 15 20

x1 vs. time

time

x1

0

20

40

60

80

100

0 5 10 15 20

x2 vs. time

time

x2

0

5

10

15

0 5 10 15 20

x3 vs. time

time

x3

0

2

4

6

8

10

0 5 10 15 20

x4 vs. time

time

x4

Figure A3. State histories.

30

0

-3.462

-6.924x10-24

0 5 10 15 20

lambda1 vs. time

time

la
m

bd
a1

0

0.373

0.746

0 5 10 15 20

lambda2 vs. time

time

la
m

bd
a2

0

1

2

0 5 10 15 20

lambda3 vs. time

time

la
m

bd
a3

-4

-2

0

2

4

0 5 10 15 20

lambda4 vs. time

time

la
m

bd
a4

Figure A4. Costate histories.

-2

-1

0

1

2

0 5 10 15 20

u1 vs. time

time

u1

Figure A5. Control history.

31

0

86.855

173.709

0 2 4 6 8 10 12 14 16 18 20

Hamiltonian vs. time

time

H
am

ilt
on

ia
n

Figure A6. Hamiltonian history (integral cost plus adjoined dynamics), measure of global convergence of algorithm.

32

-90

-80

-70

-60

-50

-40

-30

-20

0 2 4 6 8 10 12 14 16 18 20

H_uu EigenValues vs. time

time

H
_u

u
E

ig
en

V
al

ue
s

Figure A7. Eigenvalues of second partial of Hamiltonian with respect to control; second-order su�cient condition.

33

Appendix B

Additional Example Files

This appendix presents several example problems for use with the VTOTS.

The Unconstrained Double Integrator

As a �rst example, consider the simple double integrator de�ned by two states x and v with
di�erential equations

_x = v

_v = u

and boundary conditions
v (0) = 1

v (1) = �1

x (0) = 0

x (1) = 0

The problem is to �nd the condition u(t) that minimizes

J =
1

2

Z
1

0

u2 dt

All the information needed to set up the appropriate mac �le to produce the plant.mex4

�le is shown above. The mac �le is

/* This is the fixed-time double integrator problem */

stlist:[x,v];

ctlist:[u];

glist:[[]];

qlist:[[]];

ellist:[0.5*u^2];

phi:0;

thi:0;

psilist:[x(1,1)-x0,

v(1,1)-v0,

x(1,2)-xf,

v(1,2)-vf];

tsilist:[thyme(1)-1];

delist:[[v,u]];

namcom:[x0,v0,xf,vf];

The name list �le namcom.nml is

$namcom

X0 =0.0d+00,

V0 =1.0d+00,

XF =0.0d+00,

VF =-1.0d+00,

$end

34

Finally, vtotsinfo.m is set up by the user as

prob name='unconstrained double integrator';

jbcv=[2];

yin=rand(26,1);

yin(26)=1.0;

Note that the last estimate in yin is the �nal time, which is known to be 1.0.

To run the shooting algorithm directly, change vtotsinfo.m to

prob name='unconstrained double integrator';

yin=[1,1,1,1]';

ynu = [1,1,1,1]';

utrial = -2;

nnode=[0];

time=[0 1]';

Results for the �nite-element case with jbcv = 8 are shown in �gures B1 through B5. The
state histories for x and v are denoted by x1 and x2 in �gure B1, the corresponding costate
histories are in �gure B2, and the control history is in �gure B3. The nonsmoothness of the
curves results from the use of a relatively coarse grid with eight elements. The fact that the
Hamiltonian in �gure B4 is constant indicates that an accurate solution has been found. Finally,
the eigenvalues of @2H=@u2 are shown in �gure B5. This graph is important because its value
is always positive for all time and it provides a second-order su�cient condition that a local
minimum has been found.

State-Constrained Double Integrator

The problem described in the previous section is solved again, this time with a state constraint
of the form

S (x;v) = x� l

with �rst- and second-order time derivatives

_S (x;v) = _x = v

�S (x;v;u) = _v = u

Because the control u �rst appears in the second time derivative of S, this parameter is a second-
order state constraint. In order for VTOTS to handle this problem, the user must decide on a
switching structure for the constraint. From the results of the unconstrained problem, one might
assume the solution is composed of an unconstrained arc, followed by a constrained arc, followed
by an unconstrained arc. For certain values of l, this solution is correct; if so, the MACSYMA
setup �le would be

/* This is a fixed-final time second-order state constraint problem

Section 3.11, Bryson and Ho */

stlist:[x,v];

ctlist:[u];

glist:[[],[],[]];

qlist:[[],[u],[]];

35

ellist:[0.5*u^2,0.5*u^2,0.5*u^2];

phi:0;

thi:0;

psilist:[x(1,1)-x0,

v(1,1)-v0,

x(2,1)-ellim,

x(1,2)-x(2,1),

v(2,1),

v(1,2)-v(2,1),

x(2,2)-x(3,1),

v(2,2)-v(3,1),

x(3,2)-xf,

v(3,2)-vf];

tsilist:[thyme(3)-1];

delist:[[v,u],

[v,u],

[v,u]];

namcom:[x0,v0,xf,vf,ellim];

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1

x1 vs. time

time

x1

-1

-0.5

0

0.5

1

0 0.5 1

x2 vs. time

time

x2

Figure B1. Unconstrained, double-integrator state histories.

0

-1.089

-2.178x10-15

0 0.5 1

lambda1 vs. time

time

la
m

bd
a1

0

2

4

0 0.5 1

lambda2 vs. time

time

la
m

bd
a2

Figure B2. Unconstrained, double-integrator costate histories.

36

0

-2

-4

0 0.5 1

u1 vs. time

time

u1

Figure B3. Unconstrained, double-integrator control history.

0

-2

-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hamiltonian vs. time

time

H
am

ilt
on

ia
n

Figure B4. Unconstrained, double-integratorHamiltonian.

37

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H_uu EigenValues vs. time

time

H
_u

u
E

ig
en

V
al

ue
s

Figure B5. Unconstrained, double-integrator eigenvalues of Huu.

The problem has now been constructed as a three-phase problem. The same di�erential

equations hold for each phase. The variable qlist that holds the state constraint information

consists of three parts, one for each phase. For the �rst phase, qlist is empty, an indication

that no constraints are active. In the second phase, the state constraint is assumed to be active;

therefore, �S is put in qlist. Finally, the third phase is unconstrained, so qlist is empty again.

The user must specify the boundary conditions for this problem in psilist. Recall that the

tangency conditions S = 0 and _S = 0 discussed in the section entitled \Generalized Optimal

Control Problem" must be satis�ed at the start of the second phase. These conditions are listed

as the third and �fth conditions in psilist. The fourth and sixth conditions specify that the

states x and v are continuous; that is, the values at the end of the �rst phase equal the values at

the start of the second phase. Continuity conditions are also listed at the junction node of the

second and third phases. No tangency conditions are required at the end of a constrained arc.

Finally, the �nal time of the third phase is speci�ed as 1, but no information is known about

when the �rst and second phases end. These times, which are estimated by the user in yin, are

determined by the VTOTS.

The name list �le for this problem is

$namcom

X0 =0.0d+00,

V0 =1.0d+00,

XF =0.0d+00,

VF =-1.0d+00,

38

ELLIM =0.1d+00,

$end

and vtotsinfo.m is as follows:

prob name='state constrained double integrator';

jbcv=[1,1,1];

load yall8.dat;

yin=yall8(:,1:3);

t=[0;.1;.2;.2;.45;.7;.7;.85;1.0];

yin=table1(yin,t);

eta=[0;0;0;.1;.1;.1;0;0;0];

yin=[yin,ones(9,3),eta];

yin=reshape(yin',54,1);

yin=[yin;ones(11,1)];

yin(66)=0.2;

yin(67)=0.7;

yin(68)=1.0;

The answer from the unconstrained problem, saved in the variable yall8.dat, has been used to

generate initial estimates of the states for the constrained problem . Usually, the costate and

control histories change drastically as compared with the unconstrained case and are not useful

for estimates. The matrix yall is loaded into vtotsinfo.m, and then the variable yin is de�ned

as the matrix containing all rows and the �rst three columns of yall. These columns are the time

and the two states. Next, a new variable t is de�ned to locate the points of unknowns along the

time line. Remember that this is a three-phase problem with coincident nodes de�ned at 0.2 and

0.7 sec. These times are just estimates as to when the constrained arc starts and ends. After

the table1 routine is used, estimates for the multipliers � are included as the last column of

yin. Note that because the constraint is assumed to be inactive in the �rst and third phases, the

multiplier is necessarily 0. The reshape command is used to produce a column vector. Finally,

estimates are made for the discrete multipliers � and the �nal times of each phase.

The state, costate, control, Hamiltonian, and @2H=@u2 eigenvalue histories are shown in

�gures B6 through B10, respectively, for the case jbcv = [4, 4, 4]. Notice that in �gure B6 the

state x1 (= x) does not violate the given constraint of l = 0:1. Also, _S = v, which is denoted

with x2 in �gure B6, and �S = u in �gure B8; both remain at 0 during the constrained phase.

Figure B7 shows that both costates have discontinuities at the start of the second phase due

to the tangency conditions speci�ed in psilist; these discontinuities are part of the necessary

conditions listed in the section entitled \Generalized Optimal Control Problem." Finally, in

�gure B9 the Hamiltonian is not constant in the �rst and third phases. This lack of consistency

indicates that the exact solution has not been found (as expected). The Hamiltonian becomes

constant as more elements are used.

Shooting cannot be used on this problem because a constraint is imposed.

The assumption that this problem is composed of three arcs is true only for certain values of

l. For a larger value of l, for example 0.2, the trajectory only touches the constraint limit. In

that case, the optimal trajectory would consist of only two phases with no tangency conditions.

The MACSYMA setup �le to solve this problem for l = 0:2 would be

/* This is a fixed-final time second-order state constraint problem with a

touch-point solution.

Section 3.11, Bryson and Ho */

39

stlist:[x,v];

ctlist:[u];

qlist:[[],[]];

ellist:[0.5*u^2,0.5*u^2];

phi:0;

thi:0;

psilist:[x(1,1)-x0,

v(1,1)-v0,

x(2,1)-ellim,

x(1,2)-x(2,1),

v(1,2)-v(2,1),

x(2,2)-xf,

v(2,2)-vf];

tsilist:[thyme(2)-1];

delist:[[v,u],

[v,u]];

namcom:[x0,v0,xf,vf,ellim];

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1

x1 vs. time

time

x1

-1

-0.5

0

0.5

1

0 0.5 1

x2 vs. time

time

x2

Figure B6. Constrained, double-integrator state histories.

-40

-20

0

20

40

0 0.5 1

lambda1 vs. time

time

la
m

bd
a1

-10

-5

0

5

10

0 0.5 1

lambda2 vs. time

time

la
m

bd
a2

Figure B7. Constrained, double-integrator costate histories.

40

-8

-6

-4

-2

0

0 0.5 1

u1 vs. time

time

u1

Figure B8. Constrained, double-integrator control history.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hamiltonian vs. time

time

H
am

ilt
on

ia
n

Figure B9. Constrained, double-integratorHamiltonian.

41

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H_uu EigenValues vs. time

time

H
_u

u
E

ig
en

V
al

ue
s

Figure B10. Constrained, double-integrator eigenvalues of Huu.

Random numbers will work for initial estimates. The results for this case are not included
herein.

How does the user know whether the tra jectory touches or rides the constraint? Always run
the unconstrained problem �rst to see whether the constraint limits are violated. First-order
constraints always have a constrained arc, whereas second-order constraints frequently have
touch-point solutions and constrained arcs. Finally, if a touch-point solution is assumed and the
actual solution rides the constraint, then somewhere there is a constraint violation.

Control-Constrained Problem

This example is taken from section 3.8 of reference 7. The problem is to minimize

J =
1

2
x(T)2 +

1

2

Z
T

0
u2 dt

where T = 10, x and u are scalars, and the initial condition is x̂(0) = �19:945596. The state
equation is

_x = h(t) u with h(t) = 1 + t �
3

17
t2

Two control inequality constraints are imposed to enforce juj � 1 :

g1 = u� 1 � 0

g2 = � (u+ 1) � 0

42

The following mac �le produces the needed plant.mex4 �le:

/* This is the fixed-time control constraint problem

Section 3.8, Bryson and Ho */

glist:[[u-ulimu,-(u+uliml)]];

qlist:[[]];

stlist:[x,t];

ctlist:[u];

ellist:[0.5*u^2];

phi:0.5*x(1,2)^2;

thi:0;

psilist:[x(1,1)-x0,t(1,1)];

tsilist:[thyme(1)-10];

delist:[[u*(1+t-3*t^2/17),1]];

namcom:[x0,ulimu,uliml];

and the corresponding namcom.nml �le is

$namcom

X0 =-19.945596d+00,

ULIMU =1.0d+00,

ULIML =1.0d+00

$end

Because the state equation is an explicit function of time (nonautonomous), an extra state is

introduced. This extra state t imitates an independent variable because it runs from 0 to 10.

The MATLAB table1 function generates initial estimates when information is known about

some variables. (See the section entitled \A Detailed Example.") One vtotsinfo.m �le that

worked is listed below.

prob name='BHO-FIX - B&H control constraint prob:';

jbcv=5;

tab=[0.00 -19.9 0.0 -.1 .1 .1 .1 .1 .1 .1;

10.0 0.0 10.0 -.1 .1 .1 .1 .1 .1 .1];

t=[0;1;3;5;7;9;10];

yin=table1(tab,t);

yin=reshape(yin',63,1);

yin=[yin;ones(3,1);10.0];

Results for the states, costates, and control are shown in �gures B11 through B1 3. Notice

that the control history does not violate the speci�ed constraints.

A Two-Stage-Rocket Problem

For one last example using a time state to set up a shooting problem, consider the following

model of a two-stage rocket. The states chosen are mass m, altitude h, velocity V , and ight-path

angle ; the control is the angle-of-attack �, so the dynamic equations are

_m = �
Tvac

gIsp

43

_h = V sin

_V =
T cos��D

m
�

� sin

r2

_ =
T sin�+ L

mV
+

�
V

r
�

�

r2V

�
cos

where T = Tvac�Aep, Tvac is the thrust in a vacuum, Ae is the nozzle exit area, p is the pressure,
Isp is the speci�c impulse, g is the acceleration due to gravity at sea level, � is used here as
the Earth's gravitational constant, and r is the distance from the center of the Earth (where
Re+ h is the radius of the Earth). The drag D and the lift L are composed of axial and normal
components

q =
1

2
�V 2

Fa = qSCa

FN = qSCN�

D = FN sin�+ Fa cos�

L = FN cos�� Fa sin�

where Fa and Ca are the axial force and coe�cient, FN and CN are the normal force and
coe�cient, � is the density, S is the reference area, and q is the dynamic pressure.

The performance index is J = mjtf
, and the �nal time tf is free. The initial conditions

speci�ed are m(0) = m0 = 890149:09 kg, h(0) = 0 m, V (0) = 20:0 m/sec, and (0) = 1:57 rad.
The drop mass of the booster is 29 920 kg. The �nal velocity and altitude are V (tf)
= Vf = 7854 m/sec and h(tf) = hf = 148011:1 m. Other constant values are listed in the name
list �le.

From a numerical standpoint, all variables should be of the same order of magnitude.
Therefore, the equations have been nondimensionalized by de�ning

m = m=m0

h = h=hf

V = V=Vf

-20

-15

-10

-5

0

0 5 10

x1 vs. time

time

x1

0

2

4

6

8

10

0 5 10

x2 vs. time

time

x2

Figure B11. Control-constrained problem state histories.

44

0

-0.436

-0.871

0 5 10

lambda1 vs. time

time

la
m

bd
a1

-2.5

-2

-1.5

-1

-0.5

0

0 5 10

lambda2 vs. time

time

la
m

bd
a2

Figure B12. Control-constrained problem costate histories.

-1

-0.5

0

0.5

1

0 5 10

u1 vs. time

time

u1

Figure B13. Control-constrainedproblem control history.

A time state eta has been introduced so that each phase has a duration of 1. (See section entitled
\Time Scaling.") The e�ect of the time state is multiplication of each di�erential equation and
ellist by eta

2. The resulting setup �le is

/* macsyma script: problem.mac */

/* Simplified NLS model;

- nondimensionalized

- with aerodynamics (analytical)

- two phase (stage) problem; no fairing drop

- mass drop at staging; staging determined at optimal time

*/

/* PARAMETERS in namcom.nml */

namcom:[tvac,spimp1,spimp2,earmu,re,grav,rmass0,h0,v0,gam0,

hf,vf,gamf,dropma,rho0,sref,betar,ae, p0,betap,eng1,

eng2,ca,cna];

45

/* STATE LIST */

stlist:[rmass,h,v,gam,eta];

/* CONTROL LIST */

ctlist:[alpha];

/* INTEGRAL COST LIST */

ellist:[0,0];

/* TERMINAL COST */

phi:-rmass(2,2);

thi:0;

/* PHASE BOUNDARY CONSTRAINTS LIST */

psilist:[

rmass(1,1)-1,

h(1,1)-h0/hf,

v(1,1)-v0/vf,

gam(1,1)-gam0,

rmass(2,1)-rmass(1,2)+dropma/rmass0,

h(1,2)-h(2,1),

v(1,2)-v(2,1),

gam(1,2)-gam(2,1),

h(2,2)-1,

v(2,2)-1,

gam(2,2)-gamf

];

tsilist:[thyme(1)-1,thyme(2)-2];

/* Terms for dynamic equations */

alt:h*hf;

rho:rho0*exp(alt*betar);

faxial:ca*0.5*rho*(v*vf)^2*sref;

fnorm:cna*0.5*rho*(v*vf)^2*sref*alpha*(180/%pi);

drag:fnorm*sin(alpha)+faxial*cos(alpha);

xlift:fnorm*cos(alpha)-faxial*sin(alpha);

p:p0*exp(alt*betap);

thr1:tvac*eng1-eng1*ae*p;

thr2:tvac*eng2-eng2*ae*p;

/* DYNAMICS EQUATIONS - PHASE 1 */

rmassdot1:(-tvac*eng1)/(rmass0*grav*spimp1);

hdot1:v*sin(gam)*(vf/hf);

vdot1:(thr1*cos(alpha)-drag)/(rmass*rmass0*vf)

- earmu*sin(gam)/(vf*(re+alt)^2);

46

gamdot1:(thr1*sin(alpha)+xlift)/(rmass*v*rmass0*vf)

+((vf*v)/(re+alt)-earmu/(v*vf*(re+alt)^2))*cos(gam);

rmassdot1:100*rmassdot1*eta^2;

hdot1:100*hdot1*eta^2;

vdot1:100*vdot1*eta^2;

gamdot1:100*gamdot1*eta^2;

/* DYNAMICS EQUATIONS - PHASE 2 */

rmassdot2:(-tvac*eng2)/(rmass0*grav*spimp2);

hdot2:v*sin(gam)*(vf/hf);

vdot2:(thr2*cos(alpha)-drag)/(rmass*rmass0*vf)

-earmu*sin(gam)/(vf*(re+alt)^2);

gamdot2:(thr2*sin(alpha)+xlift)/(rmass*v*rmass0*vf)

+((vf*v)/(re+alt)-earmu/(v*vf*(re+alt)^2))*cos(gam);

rmassdot2:100*rmassdot2*eta^2;

hdot2:100*hdot2*eta^2;

vdot2:100*vdot2*eta^2;

gamdot2:100*gamdot2*eta^2;

/* DYNAMICS EQUATIONS LIST */

delist:[[rmassdot1,hdot1,vdot1,gamdot1,0],

[rmassdot2,hdot2,vdot2,gamdot2,0]];

Several features are important in this mac �le.

1. Notice that rmass, not mass, is used for the state because the FORTRAN �les treat

mass as an integer.

2. Note that the states in psilist are scaled.

3. No boundary conditions on eta occur in psilist because eta has a di�erent unknown

constant value in each phase.

4. When multiplied by the di�erential equations, the variable eta is squared only to ensure

a positive value. Therefore, the returned value of eta is the square root of the length of

the phase.

5. The di�erential equation for eta is 0 because eta is a constant.

6. Because each phase has been scaled, the �nal time of the �rst phase is 1, and the �nal

time of the second phase is 2, as indicated in tsilist.

The name list �le, which de�nes the values of the vehicle parameters and physical constants,

is

$namcom

tvac = 2594963.0d+00,

spimp1 = 430.55d+00,

spimp2 = 430.55d+00,

earmu = 3.98601d14,

re = 6.378145d6,

grav = 9.81d+00,

rmass0 = 890149.09d+00,

47

h0 = 0.0d+00,

v0 = 20.0d+00,

gam0 = 0.157d+01,

hf = 148011.1d+00,

vf = 7854.0d+00,

gamf = 0.0d+00,

dropma = 29920.0d+00,

rho0 = 1.35924d+00,

sref = 5.518d+01,

betar=-0.140559d-03,

ae = 3.823d+00,

p0 = 97136.2d+00,

betap = -0.14186d-03,

eng1 = 5.0d+00,

eng2 = 1.0d+00,

ca=0.35d+00,

cna = 0.045d+00,

$end

The initial estimate from trial and error is loaded into the vtotsinfo.m �le with the load

command. Also, optional variables that may be de�ned in the vtotsinfo.m �le are timestate

and scale. These variables are for plotting only. The vtotsinfo.m �le is

prob name='NLS';

jbcv=[32,32];

load yout3232.dat;

yin=yout3232;

m0=890149.09;

hf=148011.1;

vf=7854.0;

scale=[100.0,m0,hf,vf,1,1,1,m0/hf,m0/vf,m0,1;

100.0,m0,hf,vf,1,1,1,m0/hf,m0/vf,m0,1];

timestate=5;

By de�ning timestate=5, the x-axes of the output plots are scaled to the true lengths of
each phase. The variable scale redimensionalizes the states and costates. Scaling the states
automatically scales the costates. Plots of the states and costates (except for the piecewise-
constant time state and the corresponding time costate) are shown in �gures B14 and B15 for a
�nite-element run of 32 elements in each phase. The control history is shown in �gure B16.

48

0

2

4

6

8

10 x105

0 500

x1 vs. time

time

x1

0

0.5

1

1.5 x105

0 500

x2 vs. time

time

x2

0

2000

4000

6000

8000

0 500

x3 vs. time

time

x3

0

0.5

1

1.5

2

0 500

x4 vs. time

time

x4

Figure B14. State histories for two-stage-rocket problem.

49

-1

-0.8

-0.6

-0.4

-0.2

0

0 500

lambda1 vs. time

time

la
m

bd
a1

-1.5

-1

-0.5

0

0 500

lambda2 vs. time

time

la
m

bd
a2

-70

-60

-50

-40

-30

-20

0 500

lambda3 vs. time

time

la
m

bd
a3

-15000

-10000

-5000

0

5000

0 500

lambda4 vs. time

time

la
m

bd
a4

Figure B15. Costate histories for two-stage-rocket problem.

-0.4

-0.2

0

0.2

0.4

0 500

u1 vs. time

time

u1

Figure B16. Control history for two-stage-rocketproblem.

50

Appendix C

Programmer File Reference List

Below is a list and brief description of all the MATLAB m-�les in the VTOTS. First, a handful

of �les used by both algorithms is listed. Then the m-�les speci�cally used by the �nite-element

code are listed, followed by the shooting code m-�les.

VTOTS Driver Subroutines

alert.m issues error or warning messages as prompted by vtots.m

fems.m produces the initial estimate for shooting after a �nite-element run

plotter.m produces plots of the output after a successful �nite-element or shooting

run; called by vtots.m, but may be called by the user directly

printfull.m a modi�ed print.m �le that prints the plots produced by plotter.m

in landscape mode; type printfull instead of print at the MATLAB

prompt

vtots.m the main driver routine for VTOTS; reads vtotsinfo.m, checks for a

proper initial guess, calls the �nite-element and shooting algorithms, and

calls the plotter.m routine

Finite-Element Method

enphas.m de�nes the error vector and Jacobian at the end of a phase

errorvec.m �nds an error vector for use by fsolve.m

febc.m de�nes the error vector and Jacobian for the costate boundary conditions

at the beginning and end of each phase

fecontin.m provides MATLAB's ode45.m integrator with the di�erential equa-

tions needed to solve the system of equations with a simple continuation

method

fejac.m calls stphas.m, inphas.m, and enphas.m to �ll in most of the error

vector or Jacobian

feocbvp.m the main driver routine for the �nite-element code; determines the prob-

lem parameters and prompts the user for a solution method

fepsi.m de�nes the error vector and Jacobian for the boundary conditions held in

psilist

fesolv.m the driver subroutine to �ll the error vector and Jacobian; also solves the

linearized system, if appropriate

geth.m calculates the Hamiltonian H and the eigenvalues of @2H=@u2 for plotting

purposes

inphas.m de�nes the error vector and Jacobian for the elements on the interior of a

phase

jacob.m �nds an error vector for use by fsolve.m

morenode.m uses the MATLAB linear interpolation routine to generate new initial

estimates for feocbvp.m

51

nodal.m extracts nodal values of states, costates, and controls; assembles these

values with the appropriate time vector in a matrix called yall for plotting

by plotter.m; the user may save yall and call plotter.m directly, if

desired

solve.m called by feocbvp.m when the Newton method is chosen by the user;

determines the step-size logic and convergence criteria

stphas.m de�nes the error vector and Jacobian for the equations at the beginning of

a phase

timcond.m de�nes the error vector and Jacobian that corresponds to the boundary

conditions held in tsilist and the boundary conditions on the Hamiltonian

unod.m uses a Newton method to determine the nodal values of the control; called

by nodal.m

Shooting Method

geths.m calculates the Hamiltonian H and the eigenvalues of @2H=@u2 for plotting

purposes

getu.m solves for the optimal control using a Newton iteration

jacobi.m calculates an analytical Jacobian matrix needed by rhs.m

makepsi.m calculates the error vector 	, used to solve for the initial values with a

Newton iteration

psiend.m calculates the @	=@Xf matrix that is part of the Newton step to �nd the

initial values

psist.m calculates the @	=@X0 matrix that is part of the Newton step to �nd the

initial values

rhs.m calculates the right side of the di�erential equations integrated by the

ode45.m integrator

salvo.m the driver m-�le for the shooting code; all integrations and error calcula-

tions are done in this �le

ushape.m conditions a control guess for getu.m

varstr.m saves variables so that fewer globals are needed

52

References

1. Hargraves, C. R.; and Paris, S. W.: Direct Trajectory Optimization Using Nonlinear Programming and

Collocation. J. Guid., Control, & Dyn., vol. 10, July{Aug. 1987, pp. 338{342.

2. Hargraves, Charles; Johnson, Forrester; Paris, Stephen; and Rettie, Ian: Numerical Computation of Optimal

Atmospheric Trajectories. J. Guid. & Control, vol. 4, no. 4, July{Aug. 1981, pp. 406{414.

3. Vlassenbroeck, Jacques: A Chebyshev Polynomial Method for Optimal Control With State Constraints.

Automatica, vol. 24, July 1988, pp. 499{506.

4. Zhu, Jian-Min; and Lu, Yong-Zai: Hierarchical Strategy for Non-Linear Optimal Control Systems Via STWS

Approach. Int. J. Control, vol. 47, no. 6, June 1988, pp. 1837{1848.

5. Prenter, P. M.: Splines and VariationalMethods. John-Wiley& Sons, Inc., c.1975.

6. Kelley, C. T.; and Sachs, E. W.: Quasi-Newton Methods and Unconstrained Optimal Control Problems. SIAM
J. Control & Optim., vol. 25, no. 6, Nov. 1987, pp. 1503{1516.

7. Bryson, Arthur E., Jr.; and Ho, Yu-Chi: Applied Optimal Control, Revised printing. Hemisphere Publ. Corp.,
c.1975.

8. Kuo, Chung-Feng; and Kuo, Chen-Yuan: Improved Gradient-Type Algorithms for Zero Terminal Gradient

Optimal Control Problems. J. Dyn. Syst., Meas., & Control, vol. 109, Dec. 1987, pp. 355{362.

9. Gruver, W. A.; and Sachs, E.: Algorithmic Methods in Optimal Control. Pitman Publ., 1981.

10. Oberle, H. J.: Numerical Treatment of Minimax Optimal Control Problems With Application to the Reentry

Flight Path Problem. J. Astronaut.Sci., vol. 36, nos. 1/2, Jan.{June 1988, pp. 159{178.

11. Pesch, Hans Josef: Real-Time Computation of Feedback Controls for Constrained Optimal Control Problems.

Part 1: Neighbouring Extremals. Opt. Control Appl. & Methods, vol. 10, no. 2, Apr.{June 1989, pp. 129{145.

12. Pesch, Hans Josef: Real-Time Computation of Feedback Controls for Constrained Optimal Control Problems.

Part 2: A Correction Method Based on Multiple Shooting. Opt. Control Appl. & Methods, vol. 10, no. 2,

Apr.{June 1989, pp. 147{171.

13. Menon, P. K. A.; and Lehman, L. L.: A Parallel Quasi-Linearization Algorithm for Air Vehicle Trajectory

Optimization. J. Guid., Control, & Dyn., vol. 9, no. 1, Jan.{Feb. 1986, pp. 119{121.

14. Roberts, S. M.; and Shipman, J. S.: Multipoint Solution of Two-Point Boundary-Value Problems. J. Optim.

Theory & Appl., vol. 7, no. 4, Apr. 1971, pp. 301{318.

15. Bless, Robert R.: Time-Domain Finite Elements in Optimal Control With Application to Launch-Vehicle
Guidance. NASA CR-4376, 1991.

16. Roberts, Sanford M.; and Shipman, Jerome S.: Two-Point Boundary Value Problems: Shooting Methods.

American Elsevier Publ. Co., 1972.

17. Subrahmanyam, M. B.: A Computational Method for the Solution of Time-Optimal Control Problems by

Newton's Method. Int. J. Control, vol. 44, no. 5, Nov. 1986, pp. 1233{1243.

18. Brauer, G. L.; Cornick, D. E.; Habeger, A. R.; Petersen, F. M.; and Stevenson, R.: Program To Optimize

Simulated Trajectories (POST). Volume I|FormulationManual. NASA CR-132689, 1975.

19. Macsyma Reference Manual Version 13. Doc. No. SMI0500030.013, Symbolics, Inc., Nov. 1988.

20. MATLAB
TM

for Sun Workstations|User's Guide. Math Works, Inc., Jan. 31, 1990.

21. Kane, Thomas R.; and Levinson, David A.: Dynamics,Theory and Applications. McGraw-Hill, c.1985.

53

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, toWashington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1993 Technical Memorandum

4. TITLE AND SUBTITLE

Variational Trajectory Optimization Tool Set
Technical Description and User's Manual

6. AUTHOR(S)

Robert R. Bless, Eric M. Queen, Michael D. Cavanaugh, Todd A. Wetzel,
and Daniel D. Moerder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 946-01-00-82

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17166

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-4442

11. SUPPLEMENTARY NOTES

Bless: Lockheed Engineering & Sciences Co., Hampton, VA; Queen and Moerder: Langley Research Center,
Hampton, VA; Cavanaugh: George Washington University, Hampton, VA; Wetzel: Iowa State University,
Ames, IA

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 18

13. ABSTRACT (Maximum 200 words)

This report briey describes the algorithms that comprise the Variational Trajectory Optimization Tool Set
(VTOTS) package. The VTOTS is a software package for solving nonlinear constrained optimal control
problems from a wide range of engineering and scienti�c disciplines. The VTOTS package was speci�cally
designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of
analytical functions, the user needs only to de�ne the problem in terms of symbolic variables. This version of
the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions.
The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain
�nite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package,
may be run independently or jointly. The �nite-element algorithm generates approximate solutions, whereas
the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some
examples with results, and a brief description of the individual subroutines are included in this report.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Optimal control algorithm; Finite elements; Shooting methods 56
16. PRICE CODE

A04
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

